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A B S T R A C T

Exploring the complex interactions between climate variables and ecosystem processes is crucial 
for understanding long-term environmental changes. This study examines the spatiotemporal 
dynamics of carbon, water and energy fluxes and their impacts on ecosystem processes in 
Bangladesh from 2005 to 2022 utilizing multi-source remote sensing and ground-based meteo
rological data. Carbon dynamics are estimated through gross primary productivity (GPP), net 
primary production (NPP), and ecosystem respiration (RE). Water and energy balances are 
derived from evapotranspiration (ET), water use efficiency (WUE), net radiation (Rn), and latent 
heat (LE). Our estimates indicate that GPP varied from 2351.29 g C m− 2 y− 1 in 2009–2178.45 g C 
m− 2 y− 1 in 2020, while NPP ranged from 1248.13 g C m− 2 y− 1 in 2012 to 929.46 g C m− 2 y− 1 in 
2020, reflecting temporal variations in photosynthetic efficiency and carbon storage. The ratio of 
LE/Rn was found to vary from 0.72 to 1.01, with an average of 83 %, indicating that a significant 
portion of the radiative energy was transferred to the atmosphere as turbulent flux. Validation of 
LUE-based GPP compared to FLUXCOM-GPP showed a moderate correlation (R2 

= 0.61, p <
0.005), supporting the reliability of the estimates. We also conducted multivariate regression 
analysis to assess the relationships between climate variables and carbon, water, and energy 
balance. The results indicate that photosynthetically active radiation (PAR) is the primary and 
dominant driver of GPP (R2 = 0.97), while temperature and precipitation are key factors 
significantly influencing carbon uptake. This study presents a comprehensive, integrated assess
ment of carbon, water, and energy fluxes at the national scale across Bangladesh, emphasizing the 
crucial role of climate variables in shaping these fluxes and offering valuable insights for climate- 
resilient land management and sustainable carbon strategies in monsoon-dominated regions.
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1. Introduction

Ecosystem functioning depends on the exchanges of carbon, water, and energy, and understanding these interactions is crucial in 
tropical regions vulnerable to climate extremes (Heimann and Reichstein, 2008; Malhi et al., 2020; Migliavacca et al., 2021; Pugnaire 
et al., 2019). These interactions are strongly influenced by seasonal climate variability, particularly the monsoon, which regulates 
water and energy dynamics into ecosystems (Kondo et al., 2017). Tropical monsoon climate plays a critical role in regulating vege
tation phenology, water availability, and energy fluxes (Suepa et al., 2016). However, the insufficiency of long-term eddy covariance 
(EC) station-based flux measurement and site observed ecosystem data limit the ability to quantify ecosystem responses to climatic 
variability at a national scale in monsoon-affected regions (Rodda et al., 2021; Burman et al., 2025; Ma et al., 2025). Addressing this 
limitation requires an integrated approach that combines multi-source satellite remote sensing with climate records to monitor the 
spatiotemporal dynamics of carbon, water, and energy balance across diverse ecosystems (Deng et al., 2019; Bu et al., 2021).

Terrestrial ecosystems are the main carbon sinks, absorbing carbon dioxide (CO2) through photosynthesis and storing it as biomass 
(Frank et al., 2015; Keenan and Williams, 2018; Ito, 2019; Yang et al., 2022; Nzabarinda et al., 2025). This process is commonly 
assessed using remote sensing indices such as the normalized difference vegetation index (NDVI) and leaf area index (LAI), which 
provide an indication of vegetation health and biomass productivity (Vicente-Serrano et al., 2016; Xue and Su, 2017; Gebrechorkos 
et al., 2023). LAI estimates vegetation cover per unit area (m2/m2), while gross primary productivity (GPP) quantifies carbon 
assimilation through photosynthesis (Asner et al., 2003; Yang et al., 2021; Röll et al., 2024). The balance between GPP, net ecosystem 
production (NEP), and ecosystem respiration (RE) determines whether ecosystems function as carbon sources or sinks and influences 
atmospheric CO2 concentrations (Wang et al., 2021; Krause et al., 2022).

Carbon flux dynamics requires examining their interactions with energy and water cycles, which regulate ecosystem productivity 
(Govind and Kumari, 2014; Canadell et al., 2023). GPP characterizes the total carbon fixed through photosynthesis, while net primary 
production (NPP) accounts for the fraction remaining after plant respiration, supporting growth and biomass accumulation (Roxburgh 
et al., 2005; Van Oijen et al., 2010). The RE incorporates both autotrophic (plant) and heterotrophic (microbial) respiration, returning 
CO2 to the atmosphere (Dusenge et al., 2019; Quetin et al., 2023). Traditionally, EC flux towers have been used to measure these fluxes 
in real time, providing crucial insights into carbon, water, and energy exchanges but their high cost and maintenance requirements of 
EC towers limit broader deployment (Baldocchi et al., 1988; Chu et al., 2021; Callejas-Rodelas et al., 2024), particularly in developing 
regions.

Energy balance is a key driver of ecosystem function, regulating interactions between terrestrial ecosystems and the atmosphere 
(Shaver et al., 2000; Smith et al., 2013). Energy exchange occurs through radiative and turbulent fluxes, with net radiation (Rn) and 
ground heat flux (G) representing energy absorbed by the land surface (Aguiar et al., 2019; Bhattacharya et al., 2022). Latent heat flux 
(LE) and sensible heat flux (H) determine how energy is partitioned into evapotranspiration (ET) and surface temperature regulation 
(Wilson et al., 2002; Sepulcre-Canto et al., 2014; Chen and Liu, 2020). The efficiency of these exchanges influences ecosystem pro
ductivity, resilience, and responses to environmental variability. Analyzing long-term variations in energy balance components (Rn, 
LE, H, and G) provides critical understanding into how ecosystems allocate energy and regulate carbon and water fluxes (D'Odorico 
et al., 2010). Besides, ET plays a key role in linking energy, water, and carbon cycles, representing water loss through plant tran
spiration and soil evaporation (Novák and Novák, 2012; Bu et al., 2021). Water use efficiency (WUE), defined as the ratio of GPP to ET, 
specifies an ecosystem's ability to sustain carbon uptake with minimal water loss (Yang et al., 2016; Liu et al., 2020; Elfarkh et al., 
2023; Fathi-Taperasht et al., 2023). Higher WUE reflects improved drought resilience, while variations in ET and GPP highlight shifts 
in water availability and carbon assimilation (Seleiman et al., 2021; Sharma et al., 2023). Drought conditions disrupt this balance by 
reducing GPP, increasing water stress, and limiting carbon sequestration. Understanding the interplay between ET, GPP, and WUE is 
essential for evaluating ecosystem responses to climate variability and maintaining carbon, water and energy balance stability (Yang 
et al., 2021, 2024; Zhang et al., 2024).

The critical importance of carbon-water-energy interactions is well recognized; however, comprehensive research on these dy
namics, particularly in the context of ecosystem functioning, is lacking in many regions. The present study focuses on Bangladesh, 
located in a tropical region in South Asia that is highly vulnerable to climate change and extreme weather events such as flooding, and 
prolonged droughts are common annual climatic phenomena (Azam et al., 2021; Islam et al., 2022; Das et al., 2024). Its 
monsoon-driven climate influences seasonal variations in vegetation productivity, water availability, and energy fluxes, which shape 
carbon dynamics. While agricultural lands, wetlands, forests, and coastal ecosystems contribute to regional and global carbon cycles, 
national-scale assessments of long-term carbon flux trends are limited. Very few studies have addressed the aspects of ecosystem 
functioning in relation to climate change, leaving a significant gap in understanding the broader spatial and temporal patterns of 
carbon uptake and ecosystem resilience (Ahmed et al., 1999; Reid and Shafiqul Alam, 2017; Majumder et al., 2019; Anjum et al., 2024; 
Bhowmik et al., 2024; Tithi et al., 2024). The present research conducts a comprehensive study integrating multi-source remote 
sensing and weather station-based carbon, water, and energy flux, providing a deeper understanding of how climate change influences 
ecosystem processes and dynamics.

Recent advancements in ecosystem modeling have introduced diverse approaches to quantify coupled carbon, water, and energy 
fluxes (Zhang et al., 2017; Hussain et al., 2024a). Statistical and machine learning models integrate satellite, meteorological, and eddy 
covariance (EC) data to estimate ecosystem productivity and respiration (Guan et al., 2021; Zhu et al., 2023; Ma et al., 2025). Light Use 
Efficiency (LUE) models describe GPP-based carbon dynamics as a function of absorbed photosynthetically active radiation (PAR) and 
environmental constraints such as temperature, vapor pressure deficit (VPD), and radiation (Guan et al., 2021; Hussain et al., 2024b), 
while process-based models simulate biophysical and biogeochemical exchanges between the land surface and atmosphere (Deng 
et al., 2019). Remote sensing provides a scalable, cost-effective means for monitoring carbon fluxes (Zhao et al., 2022; Hussain et al., 
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2024a; Wang et al., 2024; Zhu et al., 2024), and integrating MODIS-derived GPP with PAR, NDVI, and climatic variables improves 
estimates of ecosystem productivity and carbon balance (Zhang et al., 2017, 2020; Guan et al., 2021; Weiland et al., 2023). Integration 
of multi-source GPP datasets (MODIS, GOSIF-GPP, and FLUXCOM) with EC flux measurements further enhances process-based esti
mation of carbon uptake and photosynthetic performance beyond traditional LUE models, supporting assessments of interannual 
variability and climatic stressors such as temperature, PAR, and precipitation on carbon–water–energy interactions (Li and Xiao, 
2019).

The primary purpose of this study is to investigate long-term (2005–2022) carbon, water, and energy fluxes in Bangladesh using 
multi-source remote sensing data and climate records from weather stations. The specific objectives are: (i) to assess seasonal and 
interannual variations in biomass productivity using satellite-derived phenological indicators; (ii) to quantify the spatiotemporal 
dynamics of carbon, water, and energy fluxes across diverse tropical ecosystems; (iii) to investigate the role of key climatic drivers in 
regulating carbon uptake, evapotranspiration, and energy exchange processes. By examining the interactions between carbon, water, 
and energy fluxes, this study fills a significant knowledge gap by providing a comprehensive long-term assessment of ecosystem 
resilience and carbon sequestration potential in Bangladesh. Leveraging multi-source remote sensing with ground-based weather 
station data, this study provides enhanced spatial and temporal resolution compared with previous research in similar ecosystems 
(Burman et al., 2020, 2021, 2024, 2025; Dubey and Ghosh, 2023).

Fig. 1. Study Area Maps: (a) The location of Bangladesh; (b) Land Use/Land Cover (LULC) of Bangladesh, derived from MODIS-LULC data using the 
FAO land use classification system (Di Gregorio and Jansen, 2005); (c) Generalized Physiographic Map of Bangladesh, where major physiographic 
classes are categorized based on their geological and ecological characteristics (United States Geological Survey, 2021); and (d) Climate map of 
Bangladesh showing the locations of weather stations, with a color gradient representing average precipitation across the country from 2005 to 2022 
and contour lines indicating temperature isotherms for the same period.
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2. Data and methods

2.1. Study area

The study area, Bangladesh, is located in South Asia, spanning latitudes 20◦34′′ to 26◦38′′ N and longitudes 88◦01′′ to 92◦41′′ E, with 
a total land area of 148,460 km2 (Central Intelligence Agency, 2025). The Bay of Bengal borders the country to the south and shares 
land boundaries with India on three sides, while a small portion of the southeast borders Myanmar (Fig. 1). Bangladesh is predomi
nantly a low-lying floodplain, with its origins in the Himalayan Mountain range. Its geographic location makes it highly susceptible to 
the impacts of climate change (Islam et al., 2015). Bangladesh has a tropical humid climate characterized by moderate temperatures, 
high humidity, and notable fluctuations in air pressure, wind direction, rainfall, and temperature (Fattah et al., 2023). The average 
minimum temperature hovers around 15 ◦C, while maximum temperatures reach 35 ◦C during the hot summer. The country receives 
an average of 2300 mm of precipitation annually, with most rainfall occurring during the month of July. Bangladesh has three distinct 
agroclimatic seasons: (i) the hot pre-monsoon summer (March to May), (ii) the rainy monsoon summer (June to September), and (iii) 
the dry winter season (December to February). These seasonal climate variations and the country's physiographic features significantly 
influence agricultural productivity and vegetation growth (Hussain et al., 2021).

The ecosystem and vegetation distribution of Bangladesh is influenced by the physical characteristics of the Himalayan piedmont 
and the broader Indian subcontinental climate, which are also present in similar physiographic regions of India (Fig. 1). Moreover, the 
results of this study reflect broader trends applicable to similar climatic regions across the Indian subcontinent, highlighting the 
interconnected nature of carbon, water, and energy flux dynamics beyond national boundaries. However, Bangladesh was selected as 
the study area based on its dynamic vegetation types and seasonality, primarily due to data accessibility. This selection ensures a 
comprehensive analysis of carbon, water, and energy fluxes within a defined geopolitical region while accounting for the country's 
diverse microclimatic variations and environmental conditions.

2.2. Data

2.2.1. Remote sensing data
Satellite data from MODIS onboard Terra and Aqua were used, providing near-global coverage with 36 spectral bands at 250 m, 

500 m, and 1000 m resolutions (Table 1). Data on PAR, NDVI, LAI, ET, GPP, land use and land cover (LULC), and land surface 
temperature (LST) were obtained from the MODIS data provider site (https://modis.gsfc.nasa.gov/data/; accessed on August 10, 
2024). Energy flux data, including latent heat flux (LE), sensible heat flux (H) and ground heat flux (G), were sourced from NASA's 
Land Information System Data (LISD) of NASA GES-DISC at NASA Goddard Space Flight Center (https://disc.gsfc.nasa.gov/datasets/; 
accessed on August 20, 2024).

2.2.2. FLUXCOM and GOSIF GPP data
The FLUXCOM GPP dataset provides gap-filled, global gross primary productivity estimates derived from machine learning models 

trained on flux tower measurements and climate data (https://fluxcom.org/CF-Download/; accessed on July 25, 2025). The GOSIF 
GPP dataset offers satellite-based global GPP estimates derived from solar-induced chlorophyll fluorescence (SIF), providing high- 
resolution observations of photosynthetic activity (Li and Xiao, 2019). Both datasets were used to validate and compare the 
modeled GPP results.

Table 1 
Summary of data characteristics. The study includes data from 25 weather stations across study area obtained from the Bangladesh Meteorological 
Department (BMD), with interpolation applied for comparison with satellite data at spatial scales ranging from 10 m to 500 m. The energy flux data 
including ground heat, sensible heat, and latent heat were sourced from the Land Information System Data (LISD) of NASA Goddard Space Flight 
Center.

Data Sources Variable Temporal Resolution Spatial Resolution

Weather Stations (BMD) Precipitation (mm) Monthly 500 m (Interpolated)
Temperature (◦C)
Humidity (%)

NASA – LISD; Version 2.0 Ground Heat (W m− 2) Monthly 0.25◦ × 0.25◦

Sensible Heat (W m− 2)
Latent Heat (W m− 2)

MODIS (MCD18C2); Version 6.2 PAR (W m− 2) Daily
MODIS (MOD13Q1); Version 6.1 NDVI 16-Days
MODIS (MOD15A2H); Version 6.1 LAI (m2/m2) 16-Days
MODIS (MOD16A2); Version 6.1 ET (mm d− 1) 8-Days
MODIS (MOD17A2H); Version 6.1 GPP (g Cm− 2 d− 8) 8-Days
MODIS (MCD12Q1); Version 6.1 LULC Yearly
MODIS (MOD11A1); Version 6.1 LST (◦C) Daily 1 km
FLUXCOM GPP (g C m− 2 d− 1) Monthly ~8.5 km
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2.2.3. Weather station data
Meteorological data, including temperature, precipitation, and wind speed, were collected from 25 ground stations of the 

Bangladesh Meteorological Department (BMD) for 2005–2022 and averaged by month. Station locations are shown in Fig. 1d, with 
distances between stations ranging from 27 km to 145 km (average 55 km). To match the 500 m resolution of MODIS satellite data, we 
interpolated the observations using the inverse distance weighting (IDW) tool in ArcGIS Pro 3.4 to create continuous climate surfaces. 
Climate variables were then extracted at the center of each MODIS grid cell to ensure spatial consistency. The mean temperature 
measured at weather stations was 30.7 ◦C, while the satellite-derived LST was 27.27 ◦C (R2 = 0.98; P < 0.0001), and the mean monthly 
precipitation was 204.1 mm and 194.8 mm (R2 = 0.98; P < 0.0001), indicating that both datasets captured temporal variability well 
(Hussain et al., 2025). Finally, the data were checked for consistency before and after interpolation. The interpolated temperature and 
precipitation maps are presented in the appendix (Figure A1).

2.3. Experimental design for ecosystem flux assessment

We used a comprehensive approach that combined satellite observations, empirical models, and ground-based meteorological data 
to quantify carbon, water, and energy fluxes across ecosystems. This enabled a thorough assessment of energy dynamics, water fluxes 
through evapotranspiration, and efficiency metrics, alongside key carbon processes like photosynthetic uptake, respiration, and net 
exchange (Wan, 2006;Running et al., 2019; Wang et al., 2024). This analysis was derived from multiple data sources, including MODIS 
satellite products, radiation flux data from NASA GES-DISC, and long-term meteorological records from national observatories. To 
ensure data quality and consistency, we applied rigorous pre-processing steps, such as quality control, gap filling, and spatial-temporal 
alignment.

All satellite imagery were preprocessed to convert top-of-atmosphere (TOA) data into surface-reflectance products prior to analysis. 
The preprocessing steps included radiometric calibration, atmospheric correction, cloud masking (cloud coverage less than 10 %) and 
geometric correction, following the standard methods provided by the respective data sources (Feng et al., 2012; Didan et al., 2015;
Liang and Wang, 2017; Arsenault et al., 2018; Jung et al., 2020; Fathi-Taperasht et al., 2023). LST data were validated against 
nationwide weather station records from 2005 to 2022. The satellite-derived temperatures showed strong agreement with ground 
observations, with only a slight negative bias and a very high correlation (R = 0.98, P < 0.0001), confirming the reliability of the 
satellite LST for subsequent energy balance calculations.

Energy fluxes were estimated using the Penman–Monteith energy balance approach (Penman, 1948; Monteith, 1965) based on 
NASA-LISD datasets, which were preprocessed using land surface models (LSMs) and hydrologic models following the Land surface 
Data Toolkit (LDT) framework (Arsenault et al., 2018). Carbon flux validation was performed using the FLUXCOM framework, which 

Fig. 2. Schematic representation of the experimental design, illustrating the integration of key variables used in the study. These include photo
synthetically active radiation (PAR), normalized difference vegetation index (NDVI), leaf area index (LAI), evapotranspiration (ET), land surface 
temperature (LST), the water use efficiency (WUE), light use efficiency model (LUE), temperature sensitivity coefficient model (Q10), gross primary 
production (GPP), ecosystem respiration (RE), and net primary production (NPP). Energy flux components are also depicted, where G represents 
ground heat flux, H denotes sensible heat flux, LE corresponds to latent heat flux, and Rn refers to net radiation.

N. Hussain et al.                                                                                                                                                                                                       Remote Sensing Applications: Society and Environment 41 (2026) 101847 

5 



applies a rescaling and flux estimation procedure and employs a hybrid machine-learning approach that combines random forests with 
simple decision stumps in the inner nodes and Gaussian process regression (GPR) in the leaf nodes to generate flux predictions (Jung 
et al., 2020). The processed datasets were integrated into a unified analytical framework, allowing us to examine ecosystem func
tioning and its responses to climate variability (Fig. 2).

2.4. Phenological metrics

We characterized the phenological phases of agricultural and forest ecosystems (deciduous and evergreen) using a threshold-based 
method with Land Use and Land Cover (LULC) data. Bangladesh's agricultural calendar includes two main growing seasons: Boro/Aus 
(winter crops) and Aman (monsoon crops), each exhibiting distinct photosynthetic activity levels. Forest ecosystems, including mixed- 
evergreen forests, homestead vegetation, and mangroves, as well as deciduous forests, demonstrate varying seasonal phenological 
patterns (Table 2). Vegetative ecosystem types in Bangladesh are classified into mixed-evergreen forests (hill forests), deciduous forests 
(Sal forests), and mangrove forests (Fig. 1b). This classification is based on data from the Department of Agricultural Extension (DAE), 
Dhaka, Bangladesh, and the Food and Agriculture Organization (FAO), Rome, Italy, with forest classifications drawn from the Forest 
Department (FD), Dhaka, Bangladesh, and additional insights from the Bangladesh Space Research and Remote Sensing Organization 
(SPARRSO) and the International Union for Conservation of Nature (IUCN) (Rahman, 2016).

In this study, 16-day interval NDVI data were interpolated to daily values and smoothed using a Savitzky–Golay filter with a third- 
degree polynomial and a 17-day window. These parameters were selected because monsoon climate regions are particularly affected 
by false seasonal signals caused by rapid vegetation changes and intermittent cloud cover. The 17-day window effectively reduces 
noise while preserving the true seasonal dynamics typical of double-cropping systems. Phenological metrics including Start of Season 
(SOS), Peak of Season (POS), and End of Season (EOS) were extracted from the smoothed NDVI using a threshold set at 30 percent (α =
0.3) of the NDVI amplitude above the minimum baseline. Cao et al. (2018) used the threshold value of 0.9 for the correlation coef
ficient to select similar pixels for smoothing, whereas our study uses the 0.3 NDVI amplitude threshold to detect the SOS and EOS of 
vegetation activity. This threshold is commonly employed in agricultural studies to reliably identify the onset of greening while 
minimizing false detections caused by noise. It also aligns well with field-observed crop calendars in our monsoon croplands. These 
phenological metrics for the Boro and Aman seasons were derived following established methodologies (Zhang et al., 2003; White 
et al., 2005; Cao et al., 2018) and the regional crop calendar (Table 2). 

NDVIsmoothed(t)=
∑m

k=− m

Ck NDVI (t+ k) (1) 

T=NDVImin + α (NDVImax − NDVImin) (2) 

SOS=min{t∈ S|NDVIsmoothed (t)≥T } (3) 

POS= t ∈ SmaxNDVIsmoothedNDVI (t) (4) 

EOS=max {t∈ S|NDVIsmoothed (t)≥T } (5) 

where, t is the time (in days), Ck are the Savitzky–Golay filter coefficients computed based on polynomial fitting, NDVI (t+k) rep
resents the raw NDVI value at time (t + k), T is the threshold value observed NDVI over the season, NDVImin and NDVImax are the 
minimum and maximum NDVI over the season, and α is the NDVI amplitude, SOS is Start of Season, the POS is Peak of Season and the 
EOS is End of Season.

Table 2 
Vegetative ecosystem types in Bangladesh, including mixed-evergreen forests (hill forests), deciduous forests (Sal forests), 
and mangrove forests (both natural and planted).

Major LULC Vegetation types Photosynthesis level (Seasonality)

Agricultural crop Boro Low (April–May)
High (Feb–Mar)

Aus Low (May–June)
High (July)

Aman Low (July–Aug, Nov)
High (Sep–Oct)

Forest Mixed evergreen Low (Nov–April)
High (May–Oct)

Deciduous Low (Nov–April)
High (May–Oct)

Mangrove High (Aug)
Homestead vegetation Mixed evergreen Low (Nov–April)

High (May–Oct)
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2.5. Calculating energy and water balance using remote sensing

The surface energy balance estimates the interaction between incoming and outgoing radiation, expressed through Rn and asso
ciated fluxes (Penman, 1948; Monteith, 1965). Rn, the total energy from incoming solar radiation, is determined by the difference 
between shortwave radiation and outgoing longwave radiation (Kalma, 1972). As the primary energy source, net radiation drives 
processes like evaporation, photosynthesis, and temperature regulation, influencing ET, carbon assimilation, and ecosystem pro
ductivity (Marcolla et al., 2020; Seneviratne et al., 2021). Rn is segregated into three key fluxes: LE, H and G (Bu et al., 2021). These 
fluxes provide insights into energy distribution within ecosystems, influencing both water and energy cycles (Zakariazadeh et al., 
2024). The Penman-Monteith equation quantifies Rn to evaluate energy flow in the ecosystem (Penman, 1948; Monteith, 1965). 
Additionally, the carbon water and energy balance influences in the Vapor Pressure Deficit (VPD) and WUE. The VPD is calculated 
from weather station-based temperature and humidity data using Penman-Monteith equation (Penman, 1948, 1963; Monteith, 1965) 
and WUE is measured the ratio of GPP to ET, illustrating the efficiency of water in driving carbon uptake (Ai et al., 2020; Sett et al., 
2023). 

Rn= LE + H + G (6) 

WUE=
GPP
ET

(7) 

where Rn refers to net radiation (Wm− 2), LE corresponds to latent heat flux (Wm− 2), H denotes sensible heat flux (Wm− 2) and, G 
represents ground heat flux (Wm− 2), WUE is the water use efficiency (gCm− 2mm), ET is evapotranspiration and the GPP is the Gross 
Primary Production (gCm− 2) and ET is Evapotranspiration (mm).

2.6. Retrieval carbon balance using remote sensing

The carbon balance in ecosystems is modeled by the dynamic interplay between carbon fixation, release, and storage, expressed 
through the key indicators GPP, RE, and NPP. In this study, GPP was estimated using the LUE model, which links the PAR absorbed by 
vegetation to its efficiency in converting light into biomass (Monteith, 1972; Gower et al., 1999; Running et al., 2004). The model 
incorporates a conversion efficiency factor, the PAR in μmol, and the LUE, which varies with vegetation conditions (Zhang et al., 
2017). PAR data were adjusted to reflect the fraction of radiation absorbed by the ecosystem. The LUE parameter was determined as a 
function of the NDVI, with LUEmax representing the maximum light use efficiency specific to the ecosystem type. RE was estimated 
using a modified Q10 temperature sensitivity model, which includes additional controls from ET and LAI (Delogu et al., 2017; Feng 
et al., 2018; Liu et al., 2024).

The Q10 metric quantifies the temperature sensitivity of biogeochemical processes with soil respiration exemplifying how its rate 
changes for every 10 ◦C increase in temperature. Across ecosystems ranging from forests and grasslands to croplands, Q10 values vary 
widely, reflecting differences in the sensitivity of soil CO2 emissions to climatic drivers (Delogu et al., 2017; Feng et al., 2018). This 
sensitivity is strongly influenced by air temperature and precipitation, with higher Q10 values typically observed under cooler con
ditions and a decline in sensitivity as temperatures rise (Wang et al., 2006; Delogu et al., 2017). In this study, we applied the Q10 
approach to evaluate the temperature sensitivity of soil respiration, following on methodologies from similar ecosystems, including 
temperate croplands (Delogu et al., 2017), grasslands (Feng et al., 2018), and tropical forests (Wang et al., 2006). This model accounts 
for the influence of temperature, vegetation conditions, and water availability on respiration rates (Davidson and Janssens, 2006; 
Delogu et al., 2017). The temperature sensitivity factor (Q10) was applied to the MODIS-LST and temperature data from weather 
stations (Weiland et al., 2023). Empirical coefficients for ET and LAI were set based on literature values (Monteith, 1972; Gower et al., 
1999; Running et al., 2004; Zhang et al., 2017). These factors influence the rate of ecosystem respiration and were calculated for each 
time step.

Additionally, NEE was derived by subtracting GPP from RE, providing a measure of the net carbon flux in the ecosystem. Positive 
NEE values indicate carbon release, while negative values reflect carbon uptake by the ecosystem (See et al., 2024). NPP representing 
carbon fixed after accounting for autotrophic respiration, was calculated by subtracting RE from GPP. The following equations were 
used to compute these fluxes: 

GPP=α × PAR × LUE (8) 

LUE= LUEmax ×
NDVI − NDVImin

NDVImax − NDVImin
(9) 

RE=(LUEmax + β×ET+ γ× LAI) × Q10(T− Tref)/10 (10) 

NPP=GPP − RE (11) 

Where, LUE is Light Use Efficiency, the equation estimates photosynthetic efficiency based on NDVI, maximum and minimum NDVI 
with LUEmax representing the maximum efficiency specific to the ecosystem is 0.42 (Zhang et al., 2017). It normalizes the difference 
between NDVI and its minimum value over the range between NDVImax and NDVImin, allowing dynamic estimation of LUE, which 
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influences GPP. RE was estimated by combining maximum light use efficiency (LUEmax), evapotranspiration (ET), and leaf area index 
(LAI), while incorporating a temperature sensitivity factor (Q10) based on surface temperature sensitivity. Empirical coefficients β =
0.5 and γ = 0.5 were applied to weight the contributions of ET and LAI, reflecting the interaction of energy and water balance in 
regulating ecosystem respiration processes (Monteith, 1972; Gower et al., 1999; Running et al., 2004; Zhang et al., 2017). Finally, Net 
Primary Production (NPP) is calculated by subtracting RE from GPP, indicating the carbon available for plant growth, PAR is 
photosynthetically active radiation in μmol m− 2 s− 1 and α (alpha) is the conversion efficiency factor, determining the rate at which 
absorbed PAR is converted into carbon biomass of LAI extracted for different LULC.

Previous studies in South Asia have primarily relied on EC flux and satellite measurements to estimate carbon, water, and energy 
fluxes at the ecosystem scale (Table 3). While EC provides high-frequency, site-specific flux observations, its spatial coverage is 
restricted to individual tower footprints. In contrast, our study applies a LUE model combined with multi-source remote sensing (NDVI, 
LAI, ET) and ground-based weather data to estimate GPP. The correlation heatmap illustrates key relationships between environmental 
and ecosystem variables (Fig. 3a). To ensure reliability, our GPP estimates were compared with FLUXCOM-derived GPP, showing a 
satisfactory correlation (R2 = 0.61, p < 0.005) along with which supports the robustness of the model–data approach for capturing 
national-scale carbon dynamics (Fig. 3b). Similarly, comparison with GOSIF GPP showed good agreement (R2 = 0.58, p < 0.005) 
further validating the performance of the LUE-based GPP estimates (Fig. 3c).

2.7. Statistical analysis

This study included a dataset of 131,150,448 points per variable. To improve visualization and facilitate time-series generation, the 
dataset was reduced to 10,500 points for each month January from 2005 to December 2022 using machine learning techniques, 
optimizing computational efficiency while preserving analytical integrity. The reduced dataset retained statistical consistency with the 
raw data, showing similar mean and standard deviation values. This reduction was for visualization purposes only, with the full dataset 
used without any filtering for spatial analysis and map generation. The reduction process involved filtering and random sampling, 
following established methods (Olken and Rotem, 1995; Nagele, 2003; Khursheed et al., 2013). 

Xi =

⎧
⎨

⎩

Xi if Xi ∕∈ [μX − 2σX, μX + 2σX] ∧ Xi ≤ 0
0 if Xi < 0

NaN if Xi ∕∈ [μX − 2σX, μX + 2σX]

⎫
⎬

⎭
(12) 

Xfiltered =
∑Xinitial

i=1
1(X1 ∕∈ [μX − 2σX, μX+2σX] ∧ Xi ≤0) (13) 

Xreduced =Xfiltered

[
r1, r2,……, rnsamples

]
(14) 

where, μX ± 2σX were replaced with NaN, while values within the range were retained. The resulting subset, Xfiltered, was reduced from 
131,150,448 to 10,500 data points for each month January from 2005 to December 2022. The final subset, Xreduced, was obtained 
through random sampling.

We also performed single-variable linear regression to investigate relationships among the data variables. The correlation heatmap 
shows key interdependencies between environmental and ecosystem variables (Fig. 3a). Temperature shows moderate positive cor
relations with PAR (0.54) and Rn (0.75), and weaker correlations with VPD (0.24) and precipitation (0.48), while negatively corre
lating with WUE (− 0.32). PAR strongly correlates with GPP (0.99) and VPD (0.81), highlighting seasonal patterns in photosynthesis. 
Rn is found highly correlated with precipitation (0.82), suggesting shared trends. VPD and precipitation are negatively correlated 
(− 0.74), indicating that higher vapor pressure deficits are linked with lower precipitation. WUE strongly negatively correlates with ET 

Table 3 
Summary of studies on carbon, water, and energy balance across South Asian monsoon subtropical regions, including study focus, geographic setting, 
climate type, data sources, and estimated daily gross primary productivity (GPP) ranges. Approximate GPP values are extracted from published 
literature for comparative context.

Study Focus Study 
Region

Climate Data and Methods Carbon Uptake (g C m− 2 d− 1) Reference

Carbon balance India Humid 
Subtropical

Eddy Covariance Daily GPP Range 0 to 20. Burman et al. 
(2020)

Carbon and water exchanges India Humid 
Subtropical

Eddy Covariance Approximate GPP Range 0 to 
20.

Burman et al. 
(2021)

Carbon fertilization and 
ecological drought

India Humid Tropical ERA5/Earth System Model Daily Standardized GPP Range 
0 to 25.

Dubey and Ghosh 
(2023)

Carbon Water and Energy 
Balance

India Humid 
Subtropical

Eddy Covariance Approximate GPP Range 0 to 
20.

Burman et al. 
(2024)

Carbon Water and Energy 
Balance

India Humid 
Subtropical

Satellite data, Eddy 
Covariance

Daily GPP Range 0 to 20. Burman et al. 
(2025)

Carbon Water and Energy 
Balance

Bangladesh Tropical Humid Satellite data, Light Use 
Efficiency

Daily GPP Range 0 to 15. Present Study
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(− 0.91) and positively with NPP (0.92), reflecting efficient water use in high-productivity ecosystems. ET negatively correlates with 
NPP (− 0.92) and GPP (− 0.26), indicating water limitations during high transpiration. RE shows weak correlations, except for positive 
associations with P (0.45) and ET (0.87). The heatmap illustrates the complex interactions between climate variables and ecosystem 
processes, highlighting how changes in one variable may affect others.

In addition, we examined the relationship between climatic variables and water, energy, and carbon balance through a Multiple 
Linear Regression (MLR) model, where climatic variables-such as temperature, precipitation, Rn, and PAR served as predictors. The 
model also included GPP, NPP, RE, and ET as dependent variables, as represented by Eq. (12) (Shewhart et al., 2003; Kutner et al., 
2004) 

Yi= β0 + β1Xi1 + β2Xi2 + ⋯ + βpXip + εi, i = 1,⋯,n (15) 

where, Yi is the response variable, and Xi1, Xi2, …, XipXi1, Xi2, …, Xip are the predictor variables. β0 is the intercept, and β1, β2, …, 
βpβ1, β2, …, βp are the coefficients that indicate the influence of each predictor on Yi. ϵi represents the error term, capturing the 

Fig. 3. (a) Correlation heatmap between climatic drivers and carbon, water, and energy fluxes using monthly averages from 2005 to 2022. Var
iables include Temperature (T), Photosynthetically Active Radiation (PAR), Net Radiation (Rn), Vapor Pressure Deficit (VPD), Precipitation (P), 
Water Use Efficiency (WUE), Evapotranspiration (ET), Gross Primary Production (GPP), Net Primary Production (NPP), and Ecosystem Respiration 
(RE). (b) Relationship between modeled GPP and FLUXCOM GPP, with point density indicated by the color gradient. (c) Comparison between GOSIF 
GPP and LUE-based GPP, with point density represented by a blue-to-red gradient, where red indicates higher density (0–500 points).

Fig. 4. Vegetation dynamics and biomass production time series. Monthly NDVI from 2005 to 2022 (panel a) illustrates seasonal cycles and 
interannual variations in vegetation health, while the monthly average LAI (panel b) over the same period reflects trends in vegetation density and 
biomass production. In both panels, the solid line represents the monthly mean, green dots indicate individual observations, and red dots show the 
interquartile range (IQR = Q3 − Q1) for each month, capturing the variability of the data.
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difference between observed and predicted values. The model estimates these coefficients to minimize the error across all observations.

3. Results

3.1. Spatiotemporal dynamics of biomass production and seasonal phenological metrics

Analysis of NDVI and LAI from 2005 to 2022 reveals clear trends in vegetation health and biomass production in Bangladesh. The 
overall mean NDVI was 0.51 ± 0.08, gradually increasing from 0.49 in 2005 to 0.55 in 2022, with peaks in 2019 and 2022 (Fig. 4a). 
Monthly NDVI showed strong seasonal variability, peaking in September (0.63 ± 0.03) and October (0.66 ± 0.03) during the post- 
monsoon period, declining in the dry winter (December–February) and further reducing during the monsoon, particularly in 
June–July. Similarly, mean LAI increased from 1.28 ± 0.37 m2/m2 in 2005 to 1.49 ± 0.41 m2/m2 in 2022, with a peak of 1.57 ± 0.47 
m2/m2 in 2019 (Fig. 4b). Monthly LAI was highest in September (1.73 ± 0.20 m2/m2) and October (2.22 ± 0.20 m2/m2) and lowest in 
June (1.03 ± 0.14 m2/m2) and July (0.94 ± 0.14 m2/m2), reflecting seasonal changes in vegetation density. These consistent patterns 
across NDVI and LAI highlight the strong influence of climatic seasonality on vegetation dynamics and biomass production.

The phenological phases of key crops in Bangladesh, namely Boro (winter crops) and Aman (monsoon crops), were analyzed for the 
period 2005 to 2022 to understand the timing of crop growth and the impacts of climatic factors on agricultural biomass productivity 
(Table 4). By applying a threshold-based method in combination with knowledge-based crop calendars and a Savitzky–Golay filter, the 
study calculated three key phenological metrics: the Start of Season (SOS), Peak of Season (POS), and End of Season (EOS) for each 
crop. The Boro and Aus crops typically began their growing season between early and mid-January, with POS occurring between late 
March and mid-April, and EOS in late June. For the Aman crop, SOS occurred between early and mid-July, POS from late September to 
mid-October, and EOS between late November and December. These phases were consistent across the study period, with slight annual 
variations due to climatic factors.

The observed interannual variations in SOS, POS, and EOS were largely influenced by changing climatic conditions, such as 
temperature and rainfall patterns, along with shifts in agricultural practices. The data revealed that the timing of each crop's growing 
season is closely tied to environmental factors, which have led to shifts in phenological phases over the years. Understanding these 
trends is crucial for improving agricultural practices, ensuring better crop management, and mitigating the impact of climate change 
on crop productivity in Bangladesh. Additionally, the winter season, with low temperatures and reduced precipitation, plays a sig
nificant role in Boro crops growth. However, these crops rely heavily on groundwater irrigation during the winter, which minimizes 
the impact of climatic factors such as soil moisture and precipitation on biomass growth. This reliance on groundwater not only buffers 
the crops from climatic fluctuations but also enhances water use efficiency, further optimizing growth despite challenging climatic 
conditions.

In addition, the phenological phases in Bangladesh over the period from 2005 to 2022 are mainly represented by two forest types, 
deciduous and evergreen, as summarized in Table 5. For deciduous forests, the SOS generally occurred in March or April, with the POS 
typically occurring between August and September. The EOS was observed consistently around the end of November to early 
December, marking the end of active growth. The timing of these phases showed minor variations from year to year, reflecting the 
impacts of climatic fluctuations, particularly temperature and precipitation patterns. In contrast, evergreen forests include tropical 
rain forest showed a more consistent phenological pattern across the years. The SOS for evergreen forests was almost always in 
January, with the POS occurring around August or early September. The EOS for evergreen forests consistently fell in late December, 

Table 4 
The phenological phase of different crops from 2005 to 2022. The key phenological metrics Start of Season (SOS), Peak of Season (POS) and End of 
Season (EOS) were calculated based on knowledge-based crop calendars and Savitzky–Golay filter.

Year BORO Aman

SOS POS EOS SOS POS EOS

2005 January April June July September December
2006 January April June July September December
2007 January April June July September December
2008 January March June July September December
2009 January April June July October December
2010 January April June July October December
2011 January March June July September December
2012 January April June July September December
2013 February April June July October December
2014 January April June July October December
2015 January April June July September November
2016 January April June July October November
2017 January April June July September November
2018 January April June July October December
2019 January April June July October November
2020 January April June July September December
2021 January April June July September December
2022 January April June July October December
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indicating year-round growth, typical of evergreen species (Hussain and Islam, 2020; Khan et al., 2024). These patterns remained 
relatively stable throughout the study period, suggesting that evergreen forests are less susceptible to short-term climatic variations 
compared to deciduous forests. The observed variations in SOS, POS, and EOS for both forest types highlight the influence of annual 

Table 5 
The phenological phase of different forest type from 2005 to 2022. The key phenological metrics Start of Season (SOS), Peak of Season (POS) and End 
of Season (EOS) were calculated for the deciduous forest based on knowledge based phenological phase and Savitzky–Golay filter using NDVI data. 
Since evergreen forests remain active throughout the year, only the POS is included for them.

Year Deciduous Forest Evergreen Forest

SOS POS EOS POS

2005 April August November August
2006 April September November September
2007 March October November August
2008 April September November August
2009 March September November September
2010 March September November September
2011 March September November August
2012 March September November September
2013 March September November September
2014 March October November September
2015 March September November September
2016 April August November August
2017 March October November September
2018 March September November September
2019 April August November August
2020 March September November August
2021 April October November August
2022 March September November September

Fig. 5. Spatial distribution of monthly average net radiation (Rn) in W m-2 from 2005 to 2022.
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climatic conditions on vegetation dynamics. While evergreen forests exhibit a more stable and year-round growth cycle, deciduous 
forests are more sensitive to seasonal climate fluctuations, leading to notable interannual variability in their phenological phases.

3.2. Energy and water balance

The analysis of energy fluxes from 2005 to 2022 in Bangladesh revealed notable trends in partitioning Rn and LE, with distinct 
seasonal and annual patterns. Annual Rn decreased from 82.53 W m− 2 in 2005 to 71.64 W m− 2 in 2022, with an overall mean of 78.29 
W m− 2. The highest yearly Rn occurred in 2012 (85.85 W m− 2), while the lowest was recorded in 2022 (71.64 W m− 2), indicating a 
reduction over the study period. Monthly Rn data demonstrated significant seasonal variability, with peak values in June (172.39 W 
m− 2) and May (151.86 W m− 2), corresponding to the pre-monsoon and monsoon seasons when solar radiation is maximal (Figs. 5 and 
6). In contrast, the lowest values were observed in January (− 5.60 W m− 2) and December (− 6.54 W m− 2), during winter months when 
solar radiation is minimal. LE showed similar patterns, ranging from 55.74 W m− 2 in 2016 to 74.69 W m− 2 in 2021, with an overall 
mean of 64.54 W m− 2. Monthly LE values peaked in July (133.00 W m− 2) and June (116.88 W m− 2) during the monsoon season, while 
the lowest values were observed in January (25.70 W m− 2) and December (25.94 W m− 2), reflecting the dry winter months. These 
trends highlight the strong influence of solar radiation and moisture availability on both Rn and LE in Bangladesh.

The LE/Rn ratio analysis from 2005 to 2022 further illuminates the partitioning of net radiation into latent heat flux. The yearly LE/ 
Rn ratio ranged from 0.72 in 2012 and 2016 to 1.02 in 2021 and 2022, with an overall mean of 0.83, indicating that, on average, 83 % 
of Rn was transferred to the atmosphere as LE. The highest yearly ratios (1.02) occurred in 2021 and 2022, reflecting higher 
evapotranspiration than net radiation. Conversely, the lowest ratios (0.72) were observed in 2012 and 2016, indicating reduced 
evapotranspiration. Monthly LE/Rn ratios followed a strong seasonal trend, with the highest values recorded in October (1.09) and 
November (2.48) during the post-monsoon period, while the lowest values were observed in January (− 4.59) and December (− 3.97), 
corresponding to the winter months. These seasonal trends highlight the significant role of evapotranspiration in the energy and water 
balance of Bangladesh, particularly during the monsoon and post-monsoon months.

H and G showed notable seasonal and annual fluctuations between 2005 and 2022. H values ranged from − 1.91 W m-2 in 2021 to 
23.87 W m-2 in 2012, with an overall mean of 13.74 W m− 2. The highest yearly H was recorded in 2012 (23.87 W m-2), while the 
lowest values were in 2021 (− 1.91 W m− 2) and 2022 (− 1.27 W m− 2), indicating a shift toward reduced sensible heat flux in recent 
years. Monthly data showed peak H values in May (57.36 W m− 2) and April (48.20 W m− 2) during the pre-monsoon months, while the 
lowest values were recorded in December (− 22.67 W m− 2) and January (− 18.80 W m− 2), reflecting surface cooling during winter. 
Ground heat flux (G) demonstrated near-zero mean values (− 0.0008 W m− 2), with the highest positive G occurring in 2011 (0.87 W 
m− 2) and the lowest negative value in 2013 (− 0.87 W m− 2). Monthly G values peaked in April (10.57 W m− 2) and May (9.26 W m− 2) 
during the pre-monsoon months, and negative peaks were recorded in December (− 9.81 W m− 2) and January (− 12.51 W m− 2), 
reflecting the influence of solar radiation and temperature on ground heat dynamics.

ET trends from 2005 to 2022 showed a gradual increase, from 1.64 mm in 2005 to 1.79 mm in 2022, with a mean of 1.68 mm. The 

Fig. 6. Monthly energy and water fluxes from 2005 to 2022: a) Net Radiation (Rn) in W m− 2, b) Latent heat flux (LE) in W m− 2, c) Sensible heat flux 
(H) in W m− 2, d) Ground heat flux (G) in W m− 2, e) water dynamics, represented by Evapotranspiration (ET) in mm and f) monthly water use 
efficiency (WUE) in g C m− 2 H2O mm.
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highest yearly ET occurred in 2019 (1.82 mm), and the lowest in 2012 (1.47 mm), reflecting active climatic conditions and vegetation 
activity variability. Monthly ET displayed distinct seasonal patterns, with peak values in October (2.65 mm) and September (2.57 mm), 
coinciding with the post-monsoon period when moisture availability and vegetation activity were high. During the dry winter months, 
the lowest values were observed in January (0.84 mm) and February (0.88 mm). This seasonal pattern emphasizes the strong influence 
of seasonal moisture, solar radiation, and vegetation on ET, with peak values during the monsoon and post-monsoon months (June to 
November) and a significant reduction in winter (December to February). These trends highlight the interplay between water and 
energy fluxes, where seasonal variations in solar radiation and moisture availability influence both evapotranspiration and energy 
balance, shaping the overall climate dynamics of Bangladesh.

3.3. Spatial and temporal distribution of carbon balance

The annual GPP, RE, and NPP variation from 2005 to 2022 reveals significant interannual fluctuations (Figs. 7 and 8). The daily 
mean GPP was 6.25 ± 0.89 g C m− 2 d− 1, with the highest recorded in 2009 (6.44 g C m− 2 d− 1) and the lowest in 2020 (5.97 g C m− 2 

d− 1). RE exhibited an overall mean of 3.39 ± 1.11 g C m− 2 d− 1, with values ranging from 3.07 g C m− 2 d− 1 in 2012 to 3.71 g C m− 2 d− 1 

in 2019. Annual NPP averaged 3.02 ± 1.31 g C m− 2 d− 1, with the highest value in 2012 (3.42 g C m− 2 d− 1) and the lowest in 2020 
(2.55 g C m− 2 d− 1). Correlation between observed GPP (from FLUXCOM) and measured GPP (from the LUE model) shows a strong 
positive relationship with an R2 of 0.61, meaning 61 % of the GPP variability is explained by the observed data (Fig. 3b). The cor
relation was statistically significant (p < 0.005), confirming the LUE model's reliability in estimating GPP. A combination of climatic 
conditions, land management practices, and ecosystem responses to environmental stresses drives these variations. The significantly 
lower NPP in 2020 likely reflects the impacts of extreme climatic events, which disrupted vegetation productivity.

The long-term seasonal analysis of carbon fluxes (2005–2022) further underscores observed fluctuations in GPP (Fig. 10), RE, and 
NPP across the year. GPP peaked in September (361 ± 9 g C m− 2 mo− 1) and October (357 ± 12 g C m− 2 mo− 1), while the lowest values 
occurred in December (86 ± 3 g C m− 2 mo− 1) and January (95 ± 4 g C m− 2 mo− 1). RE followed a clear seasonal pattern, with peaks in 
February (152 ± 2 g C m− 2 mo− 1) and January (143 ± 4 g C m− 2 mo− 1), and the lowest values observed in May (48 ± 2 g C m− 2 mo− 1). 
NPP was highest in May (140 ± 4 g C m− 2 mo− 1) and followed by October (134 ± 5 g C m− 2 mo− 1) September (130 ± 5 g C m− 2 mo− 1) 
and April (130 ± 2 g C m− 2 mo− 1), while loest C uptake was in December and January almost the Carbon Neutral (~12–20 g C m− 2 

mo− 1). The highest GPP and NPP during March–April reflects the peak growing season of winter crops, while the September–October 
period marks the dominance of monsoon crop carbon uptake, aligning with the second phase of the crop calendar. These trends 
highlight key phenological metrics of the ecosystem (Tables 4 and 5). The decline in biomass productivity and carbon uptake in 
December–January corresponds with winter climatic conditions, characterized by reduced solar radiation and increased soil moisture, 

Fig. 7. Monthly carbon balance time series from 2005 to 2022, showing daily GPP (a), NPP (b), and RE (c) expressed in g C m− 2 d− 1. In each panel, 
the blue solid line represents the monthly mean, green dots indicate individual daily observations, and red dots mark the interquartile range (IQR =
Q3 − Q1) for each month, illustrating variability in ecosystem carbon fluxes.
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Fig. 8. Spatial distribution of monthly average Gross Primary Production (GPP) in g C m-2 mo− 1 from 2005 to 2022.

Table 6 
Yearly comparison of biomass, water, energy and carbon balance parameters, including daily LAI leaf area index (LAI in m2/m2; daily ET in mm, 
yearly total Gross Primary Production (GPP), yearly total Ecosystem Respiration (RE), yearly total Net Primary Production (NPP), total carbon uptake 
from country in (MtCO2e), net carbon uptake (MtCO2e), and carbon emissions for the years 2005–2022. The values are presented with their respective 
standard deviations where applicable. The total CO2 emissions data for Bangladesh is sourced from the Ministry of Environment, Forest, and Climate 
Change, Bangladesh, for 2019 (DoE, 2023), and from the CO2 and GHG Emission Reports by the European Commission for the years 2020–2023 
(Crippa et al., 2024).

Year LAI (m2/m2) ET (mm d− 1) GPP 
(gCm− 2y− 1)

RE 
(gCm− 2y− 1)

NPP 
(gCm− 2y− 1)

Total Uptake 
(MtCO2e)

Net-Uptake 
(MtCO2e)

Emission 
(MtCO2e)

2005 1.28 ± 0.37 1.64 ± 0.69 2304.32 1167.85 1189.61 1253.60 647.17 39.77a

2006 1.33 ± 0.37 1.66 ± 0.71 2337.17 1239.60 1144.87 1271.47 622.84 42.76a

2007 1.25 ± 0.31 1.70 ± 0.73 2271.01 1200.96 1133.75 1235.48 616.79 45.20a

2008 1.25 ± 0.39 1.64 ± 0.63 2287.81 1164.91 1180.07 1244.63 641.99 50.54a

2009 1.27 ± 0.38 1.57 ± 0.75 2351.29 1184.02 1218.90 1279.16 663.11 53.73a

2010 1.23 ± 0.35 1.59 ± 0.79 2319.39 1144.30 1230.46 1261.81 669.40 59.55a

2011 1.32 ± 0.41 1.68 ± 0.75 2292.70 1216.84 1130.96 1247.28 615.27 63.40a

2012 1.29 ± 0.38 1.47 ± 0.68 2300.69 1119.83 1248.13 1251.63 679.01 169.05
2013 1.36 ± 0.45 1.72 ± 0.74 2285.27 1252.11 1091.70 1243.24 593.91 174.62
2014 1.40 ± 0.45 1.67 ± 0.79 2325.69 1278.10 1104.49 1265.23 600.87 179.26
2015 1.41 ± 0.44 1.60 ± 0.65 2223.06 1231.47 1043.32 1209.39 567.59 187.98
2016 1.43 ± 0.39 1.64 ± 0.75 2267.22 1244.95 1078.77 1233.42 586.88 196.79
2017 1.46 ± 0.41 1.76 ± 0.59 2208.63 1274.89 984.38 1201.55 535.52 198.1
2018 1.47 ± 0.49 1.72 ± 0.66 2279.02 1258.43 1078.12 1239.84 586.52 206.87
2019 1.57 ± 0.47 1.82 ± 0.66 2285.74 1354.82 980.72 1243.49 533.53 213.19
2020 1.46 ± 0.39 1.81 ± 0.59 2178.45 1303.33 929.46 1185.13 505.65 269.03
2021 1.47 ± 0.47 1.76 ± 0.77 2256.77 1324.40 991.63 1227.73 539.47 276.8
2022 1.49 ± 0.41 1.79 ± 0.64 2280.11 1301.26 1049.43 1240.44 570.92 278.49

a Note: The total emission only includes industrial and fuel burn emissions, collected from Our World in Data (Ritchie et al., 2020).

N. Hussain et al.                                                                                                                                                                                                       Remote Sensing Applications: Society and Environment 41 (2026) 101847 

14 



as well as the transitional periods between the two main cropping systems. Similarly, the reduction observed in June and July is 
influenced by heavy monsoon rainfall, major shifts in the crop season, and flooding of lowland areas, which limit terrestrial carbon 
uptake. However, riparian vegetation remains active in this period to biomass production, continuing its role in the ecosystem until 
August (Fig. 8).

Climatic drivers notably shape the seasonal variability in carbon fluxes. The pre-monsoon period (March–May) is marked by 
favorable conditions for growth, with higher GPP and NPP driven by increased solar radiation and moderate soil moisture. In contrast, 
the monsoon season (June–July) reduces GPP and NPP, likely due to waterlogged soils, diminished sunlight, and increased respiration 
losses. During the post-monsoon and winter months (October–November), GPP and NPP increase, while RE remains relatively lower, 
supporting carbon sequestration. The peak RE observed in September and October suggests a delayed response in microbial decom
position, driven by warm and moist conditions, which accelerate microbial activity. These seasonal dynamics are intricately linked to 
temperature, precipitation patterns, and the growing season, which determine the net carbon balance in terrestrial ecosystems.

From 2005 to 2022, the carbon balance exhibited notable fluctuations. GPP ranged from 2178.45 g C m− 2 y− 1 in 2020–2351.29 g C 
m− 2 y− 1 in 2009, reflecting the variation in photosynthetic efficiency and carbon capture (Table 6). RE varied from 1119.83 g C m− 2 

y− 1 in 2012 to 1354.82 g C m− 2 y− 1 in 2019, signifying the carbon released back to the atmosphere through plant and soil processes. 
NPP, the difference between GPP and RE, exhibited significant fluctuation, with the lowest in 2020 (929.46 g C m− 2 y− 1) and the 
highest in 2012 (1248.13 g C m− 2 y− 1), underscoring variability in carbon storage within plant biomass.

Over the study period, total carbon uptake slightly decreased, from 1253.60 MtCO2e in 2005 to 1240.44 MtCO2e in 2022, with a 
peak of 1279.16 MtCO2e in 2009 (Table 6). Conversely, emissions followed a consistent upward trend, rising from 39.77 MtCO2e in 
2005 to 281.08 MtCO2e in 2022, with the largest increases observed post-2012. This widening gap between carbon uptake and carbon 
emissions highlights the growing disparity between the carbon sequestration capacity of ecosystems and the emissions resulting from 
human activities, such as deforestation and land-use changes. This trend signals an increasing challenge in mitigating the adverse 
impacts of climate change, underscoring the need for urgent action to curb emissions and enhance carbon capture in natural systems.

Fig. 9. Climatic variables from 2005 to 2022. The dark blue line represents the monthly average, while the shaded area indicates the mean ± 1 
standard deviation and the red dot shows the interquartile range (IQR = Q3 − Q1) for each month in panels a–d, a) Monthly average temperature 
(T) in ◦C, b) Monthly average Photosynthetically Active Radiation (PAR) in W m− 2, c) Monthly Normal Humidity (%), d) Monthly Vapor Pressure 
Deficit (VPD) in kPa, and (e) Monthly total Precipitation (P) in mm with the blue bar with the red line representing the yearly cumulative P.
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3.4. Climatic drivers on water, energy, and carbon balance

The variability in biomass productivity and phenology in Bangladesh is strongly influenced by seasonal patterns and prevailing 
climatic conditions. From 2005 to 2022, yearly average temperatures ranged from 30.44 ± 2.75 ◦C in 2007 to 31.54 ± 2.87 ◦C in 2021, 
with an overall mean of 30.98 ± 2.82 ◦C, while monthly temperatures followed a clear seasonal cycle, peaking in May (33.66 ±
0.75 ◦C) and lowest in January (25.34 ± 0.76 ◦C), with the highest standard deviation in February (1.08 ◦C) and lowest in September 
(0.41 ◦C), reflecting greater variability during transitional months (Fig. 9a). Similarly, yearly average photosynthetically active ra
diation (PAR) fluctuated between 297.55 ± 39.88 W m− 2 in 2020 and 321.14 ± 45.23 W m− 2 in 2009, with an overall mean of 311.57 
± 44.28 W m− 2, while monthly PAR peaked in April (384.74 ± 22.75 W m− 2) and May (374.99 ± 16.54 W m− 2) and reached minima 
in December (271.75 ± 14.26 W m− 2) and January (286.68 ± 11.16 W m− 2) (Fig. 9b).

Annual precipitation showed considerable variability, with the highest total in 2017 (3160.28 mm) and lowest in 2022 (1928.84 
mm), and a long-term average of ~2500 mm, while monthly precipitation peaked during the monsoon in July (555.08 mm), June 
(452.06 mm), and May (266.18 mm) and reached minima in the dry season in January (7.56 mm), February (16.59 mm), and 
December (10.75 mm) (Fig. 9e). Monthly humidity increased from 74.88 % in January to 85.55 % in June, then declined to 74.96 % by 
December, reflecting higher moisture during the monsoon and lower during winter (Fig. 9c). Likewise, monthly vapor pressure deficit 
(VPD) ranged from 0.60 kPa in July to 1.20 kPa in April, with higher values during dry months and lower values during the humid 
monsoon, indicating strong seasonal variability in atmospheric moisture that influences hydrological and ecosystem processes 
(Fig. 9d).

The annual WUE from 2005 to 2022 exhibited significant interannual variability, with values ranging from 3.67 ± 1.36 (g C m− 2 

H2O mm) in 2020 to 5.29 ± 2.63 (g C m− 2 H2O mm) in 2012, and an overall mean of 4.50 ± 2.12 (g C m− 2 H2O mm). Peak WUE values 
were observed in 2009 and 2010, reaching 5.20 (g C m− 2 H2O mm), while the lowest value occurred in 2020. Monthly analysis 
revealed a clear seasonal pattern, with the highest WUE in February (7.70 ± 1.59 g C m− 2 H2O mm) and January (6.70 ± 1.26 g C m− 2 

H2O mm) and the lowest in July (2.28 ± 0.18 g C m− 2 H2O mm) and September (2.30 ± 0.14 g C m− 2 H2O mm). This variation is 
closely tied to crop growth cycles, water availability, and climatic conditions, with higher WUE during the dry winter and early 
growing season months and lower WUE during the monsoon period due to increased evapotranspiration and precipitation. The WUE 
trends highlight the influence of crop type, soil moisture, and meteorological factors on the carbon-water relationship within Ban
gladesh's agricultural ecosystems. This pattern is further reflected in the overall carbon balance, where the interplay between water 
availability and carbon fluxes underlines the sensitivity of agricultural productivity and carbon sequestration to climatic shifts.

The relationship between carbon and water balance is illustrated by the association of GPP and ET (Fig. 10a) demonstrates a strong 
positive coupling between carbon assimilation and water loss across the study ecosystem (R2 = 0.42, P < 0.005). The peak data density 
occurs at GPP ≈ 6–8 g C m− 2 d− 1 and ET ≈ 1.5–2.0 mm d− 1, reflecting the dominant operating range of the ecosystem. The slope of the 
regression line suggests an average ecosystem WUE of approximately 3–4 g C kg− 1 H2O (derived from the ratio of GPP to ET), which is 
consistent with well-watered crop and grassland systems. Occasional high-ET points with moderate GPP indicate periods of lower 
WUE, likely driven by evaporative water loss under high VPD conditions or following irrigation events. The clear coupling between 
GPP and ET highlights the ecosystem's strong carbon–water linkage, where enhanced photosynthesis generally coincides with higher 
transpiration.

The relationship between GPP, representing the ecosystem carbon balance and PAR, the driving light energy, exhibits the classical 
light-response curve, with GPP increasing sharply at low PAR before reaching saturation beyond ~350 W m− 2 (Fig. 10b). Bin-averaged 
GPP values indicate that GPP rises from near 0–~10 g C m− 2 d− 1 as PAR increases from 0 to 500 W m− 2, with the hyperbolic fit 
(Fig. 10b, black line) showing a clear asymptotic trend. The initial slope of the curve, representing ecosystem light-use efficiency, is 

Fig. 10. (a) Relationship between gross primary productivity (GPP) and evapotranspiration (ET). Point density is shown by the color map, with 
warmer colors indicating higher data density. The strong positive relationship highlights coupled carbon–water dynamics, where higher GPP is 
generally associated with increased ET. (b) Relationship between GPP and photosynthetically active radiation (PAR). Individual observations (blue) 
display the typical light-response pattern. Red points represent GPP values averaged within 10s (W m− 2) PAR bins, while the black line shows the 
fitted hyperbolic curve, illustrating the hyperbolic curve fit to highlight the optimal photosynthetic capacity.
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highest under low light conditions, implying that the ecosystem efficiently converts absorbed light to carbon when radiation is 
limiting. At higher PAR, GPP approaches saturation (~10–11 g C m− 2 d− 1), suggesting biochemical or stomatal constraints on 
photosynthesis rather than light limitation. This pattern aligns with the light-response behaviors of productive croplands, where LUE 
declines as other factors (e.g., water or nutrient availability) become limited at high irradiance levels.

The MLR analysis was performed to quantify the relationship among climatic variables and carbon-water-energy fluxes (Table 7). 
GPP, representing the carbon balance was strongly controlled by light energy PAR exhibited the strongest positive relationship, 
explaining the majority of the variance (R2 = 0.97), while temperature and radiative energy Rn had a much smaller influence, with R2 

values of 0.29 and 0.03, respectively. In contrast, NPP was most strongly influenced by precipitation (R2 = 0.37), followed by PAR (R2 

= 0.28) with minor contribution from Rn (R2 = 0.08). RE was largely driven by temperature emerged as the most significant driver, 
accounting for 57 % of the variance (R2 = 0.57), followed by precipitation (R2 = 0.21). Meanwhile, ET, representing the water balance, 
showed the highest association with water availability (R2 = 0.37), with temperature playing a secondary role (R2 = 0.24). Overall, the 
MLR results confirm that light availability and temperature are the dominant factors controlling carbon uptake and respiration, while 
precipitation and net radiation exhibit more variable effects on NPP and RE. The results also present the mechanistic coupling among 
carbon uptake, respiration, and water fluxes, reflecting their shared dependencies on light, temperature, and moisture, although part 
of the coherence may result from the use of common input datasets in the modeling framework.

4. Discussion

4.1. The climatic conditions and vegetation dynamics

The climatic conditions and vegetation dynamics in Bangladesh from 2005 to 2022 exhibit distinct seasonal patterns closely linked 
to the country's agroecological environment. The stable annual temperature range (30.44 ± 2.75 ◦C to 31.54 ± 2.87 ◦C) aligns with the 
tropical monsoon climate, where the warmest months (April–June) coincide with the pre-monsoon growing season, while cooler 
months (November–January) mark the dry season, influencing crop cycles and water demand (Rahman and Anik, 2020). The observed 
variations in PAR, which peak in March–April and decline in January, play a crucial role in determining photosynthetic efficiency and 
crop productivity, particularly for rice, the dominant staple crop (Acevedo-Siaca et al., 2020; Al Mamun et al., 2025). Precipitation 
trends, with the highest annual total recorded in 2017 (3160.28 mm) and the lowest in 2022 (1928.84 mm), underscore the strong 
monsoonal influence. The peak rainfall from July to August dictates water availability for rain-fed agriculture and the succession of 
major cropping seasons (Aus and Aman rice) (Rahman et al., 2017; Saini et al., 2020).

The seasonal trends in NDVI (0.49 in 2005 to 0.55 in 2022) and LAI (1.28 m2/m2 in 2005 to 1.49 m2/m2 in 2022) reflect the 

Table 7 
Results of Multiple Regression Analysis (MLR) quantifying the relationship between climatic variables and carbon fluxes. The analysis includes the 
relationship between temperature, precipitation, photosynthetically active radiation (PAR), and net radiation (Rn) with Gross Primary Production 
(GPP), Net Primary Production (NPP), and Respiration (RE). R2 values are provided for each variable's contribution to explaining the variance in the 
respective carbon fluxes. The significance level is indicated based on the P value, where * represents non-significance (P ≥ 0.05), ** shows weak to 
moderate significance (P ≤, ≈0.05) and *** indicates very strong significance (p ≤ 0.001).

GPP

Variable Intercept Slope Standard Error R2 RMSE Significance

Temperature 0.98 0.17 0.73 0.29 0.53 **
Precipitation 6.55 0.001 0.81 0.13 0.66 **
PAR 0.01 0.001 0.01 0.97 0.01 ***
Rn 5.79 0.14 0.85 0.03 0.73 *

NPP
Variable Intercept Slope Standard Error R2 RMSE Significance

Temperature 6.78 − 0.102 1.2 0.07 1.45 **
Precipitation 3.77 0.001 0.99 0.37 0.98 **
PAR − 1.76 0.001 1.06 0.28 1.12 ***
Rn 3.43 − 0.001 1.19 0.08 1.43 *

RE
Variable Intercept Slope Standard Error R2 RMSE Significance

Temperature − 5.87 0.3 0.71 0.57 0.51 ***
Precipitation 2.9 0.001 0.96 0.21 0.93 *
PAR 1.99 0.001 1.06 0.03 1.14 *
Rn 2.81 0.001 0.96 0.21 0.91 **

ET
Variable Intercept Slope Standard Error R2 RMSE Significance

Temperature − 2.07 0.12 0.59 0.24 0.35 ***
Precipitation 1.27 0.001 0.54 0.37 0.29 ***
PAR 2.91 0.001 0.66 0.06 0.43 **
Rn 1.35 0.001 0.62 0.17 0.38 *
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influence of climatic variability on biomass production, with peak vegetation health observed in the post-monsoon period (Septem
ber–October). This period supports Aman rice and late summer vegetable cultivation and forest regrowth. In contrast, the lowest NDVI 
and LAI values during the monsoon season (May to September) suggest temporary reductions in vegetation indices due to cloud cover 
and waterlogging, which negatively impact agricultural productivity and forest ecosystems. These findings highlight the intricate 
linkages between Bangladesh's seasonal climate variability, agroecosystem dynamics, and vegetation productivity, emphasizing the 
importance of adaptive land and water management strategies to sustain agricultural resilience under changing climatic conditions 
(Rahman and Anik, 2020; Bhatnagar et al., 2024).

4.2. Remote sensing-based carbon water and energy dynamics

The spatiotemporal analysis of energy, water, and carbon fluxes in Bangladesh from 2005 to 2022 reveals significant seasonal and 
interannual variability. Net radiation (Rn) declined from 82.53 W m− 2 in 2005 to 71.64 W m− 2 in 2022, likely due to increased cloud 
cover and atmospheric changes that reduced solar radiation. LE, the dominant component of energy partitioning, exhibited an 
increasing trend in recent years, with a mean value of 64.54 W m− 2, highlighting the crucial role of evapotranspiration in energy 
dissipation. Seasonal fluctuations were evident, with peak LE values observed during the monsoon months (May to September) and 
lower values during winter (December–January), reflecting the influence of solar radiation and moisture availability (Dastour et al., 
2025). The LE/Rn ratio, averaging 0.83, highlights the predominance of latent heat flux in the energy balance, particularly during the 
post-monsoon season, when excess energy is directed toward evapotranspiration. These findings align with previous studies 
emphasizing the role of monsoon-driven hydro-climatic processes in shaping Bangladesh's energy and water cycles (Jihan et al., 2025).

Carbon flux trends indicate that climate variability and land-use changes significantly influence Bangladesh's carbon balance. The 
mean annual GPP of 6.25 ± 0.89 g C m− 2 d− 1, with two peaks in September–October and April, emphasizes the dependency of carbon 
assimilation on solar radiation and temperature and is highly influenced by crop cultivation. The sharp decline in NPP in 2020, likely 
driven by extreme climatic events such as prolonged droughts in winter and the floods in monsoon, highlights the vulnerability of 
carbon sequestration to climate anomalies. Additionally, carbon emissions increased substantially from 39.77 MtCO2 in 2005 to 
281.08 MtCO2 in 2022, suggesting that anthropogenic influences, including deforestation, urbanization, and land-use conversion, are 
outpacing the natural carbon sink capacity (Majumder et al., 2019; Tadese et al., 2023). The rising trends in emissions, coupled with 
the declining carbon uptake, underscore the urgent need for climate mitigation strategies such as afforestation, improved land 
management practices, and targeted emission reduction policies, particularly in monsoon-dominated ecosystems (Ayers and Huq, 
2009; Lee et al., 2024).

The agricultural ecosystem plays a dominant role in shaping the carbon balance of the study area, influencing both carbon uptake 
and emissions (Hussain et al., 2021). Under natural climatic conditions, winter would typically contribute less to carbon sequestration 
due to lower temperatures, reduced solar energy, and limited water availability. However, the extensive and widespread irrigation 
practice has significantly altered this seasonal dynamic, enabling winter crops to continue absorbing carbon despite these constraints. 
This adaptation not only supports agricultural productivity but also provides ecosystem benefits by maintaining carbon assimilation 
during a season that would otherwise see a decline. However, while total carbon assimilation remains relatively stable, net carbon 
uptake is decreasing due to factors such as increased soil respiration, fertilizer application, and emissions from agricultural activities. 
The role of agriculture in carbon cycling extends beyond crop growth—it encompasses land-use decisions, farming techniques, and 
economic policies that collectively shape the movement and storage of carbon within the system. By integrating ecological processes 
with socioeconomic considerations, policymakers can develop strategies that mitigate emissions and enhance carbon sequestration, 
ensuring a sustainable future for both agriculture and the broader ecosystem (Jihan et al., 2025).

The interactions between energy, water, and carbon fluxes are closely linked to seasonal monsoon patterns and long-term climate 
trends. The positive correlation between LE and GPP suggests that higher evapotranspiration during monsoon months supports greater 
carbon uptake, reinforcing the crucial role of water availability in ecosystem productivity. The observed NPP peak during the pre- 
monsoon season corresponds with optimal solar radiation conditions, indicating a strong dependence of carbon assimilation on en
ergy fluxes. However, in post-monsoon and winter months, carbon uptake decreases due to reduced photosynthetic activity and lower 
water availability. These findings signify the regional studies emphasizing the coupling of hydrological and carbon cycles in monsoon- 
driven ecosystems. The results underscore the need for integrated climate resilience strategies that consider the interconnected nature 
of energy, water, and carbon dynamics to sustain ecosystem services and mitigate climate change impacts in Bangladesh (Hussain 
et al., 2021; Jihan et al., 2025).

This study recognizes key uncertainties arising from satellite-derived inputs (NDVI, LAI, PAR, LST), meteorological observations in 
dynamic tropical region, and model assumptions. Variability in spatial resolution, temporal coverage, and measurement techniques 
contributes to differences in modeled GPP (Deng et al., 2019; Guan et al., 2021; Yang et al., 2021; Hussain et al., 2024b; Wang et al., 
2024; Isik et al., 2025). While modeled GPP showed strong agreement with FLUXCOM and GOSIF datasets (R = 0.58–0.61, P <
0.0001), light saturation at ~10–11 g C m− 2 d− 1 also indicates physiological limitations under high solar radiation levels (Fig. 10b). 
These uncertainties highlight the need for cautious interpretation of carbon fluxes and emphasize the value of LUE-based models in 
capturing carbon–water–energy dynamics in monsoon-influenced ecosystems, guiding future improvements in remote sensing and 
process-based modeling frameworks (Ma et al., 2025; Yuan et al., 2025).

4.3. Controlling factors of water, energy, and carbon balance

The relationship between climatic drivers and the water, energy, and carbon fluxes in Bangladesh's agricultural ecosystems was 
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explored using MLR (Table 7). The MLR indicated that PAR had the strongest relationship with GPP (R2 = 0.97), while temperature 
and Rn had more modest effects. For NPP, precipitation emerged as the dominant driver, explaining 37 % of the variance, whereas 
temperature and PAR had weaker correlations. Regardless of RE, temperature was the most significant variable, explaining 57 % of the 
variance, followed by precipitation.

The WUE analysis from 2005 to 2022 revealed substantial interannual and seasonal variability. Peak WUE values were observed in 
2009 and 2010, whereas the lowest values occurred in 2020. The highest WUE values were recorded during the dry winter months, 
with February and January showing the most efficient use of water during the period of limited precipitation. Conversely, the lowest 
WUE values were observed in the monsoon months of July and September, likely due to increased evapotranspiration and precipitation 
(Rahman et al., 2017; Rahman and Anik, 2020). These trends underscore the influence of crop growth cycles and climatic conditions on 
the carbon-water relationship within agricultural ecosystems, highlighting the sensitivity of carbon sequestration and water use to 
seasonal and interannual climate fluctuations (Sauer et al., 2007; Hussain et al., 2021).

This study comprehensively assesses of the climatic drivers influencing water, energy, and carbon fluxes in Bangladesh's agri
cultural ecosystems, utilizing MLR to uncover intricate relationships between climate variables and ecosystem processes. The findings 
highlight that temperature and PAR are the primary drivers of carbon dynamics, particularly GPP and RE, while precipitation and Rn 
play secondary roles. Seasonal and interannual variations in WUE further emphasize the sensitivity of agricultural productivity and 
carbon sequestration to climatic fluctuations, with higher WUE values during dry seasons and lower values during monsoon months. 
These perceptions emphasize the importance of adaptive agricultural practices to optimize water use efficiency and carbon seques
tration, especially in the context of climate change (Islam and Nursey-Bray, 2017).

However, the land-cover changes, including deforestation, urbanization, and cropland expansion over the past 18 years, can 
substantially shape carbon ecosystem, water, and energy fluxes in the study region (Zhu et al., 2022; Pereira et al., 2024). These 
transitions influence surface roughness, albedo, soil moisture availability, and vegetation structure, creating additional variability in 
flux patterns alongside climatic drivers. Considering high-resolution land-cover datasets together with long-term eddy covariance 
observations will enhance the ability to capture these combined effects and provide a more complete understanding of ecosystem 
responses to environmental change. The significance of this study lies in its potential to inform adaptive agricultural practices and land 
management strategies aimed at enhancing carbon sequestration, optimizing water use efficiency, and mitigating climate change 
impacts in Bangladesh's unique monsoon-dominated ecosystems.

4.4. Study limitations and future directions

This study investigates long-term carbon, water, and energy fluxes in Bangladesh's agricultural ecosystems by integrating multi- 
source remote sensing data with climate observations from weather stations to identify key climatic drivers. Limitations include 
the spatially restricted availability of EC flux measurements, constrained by financial and maintenance challenges, as well as seasonal 
variability in satellite data that may affect the precision of remotely sensed estimates of GPP and carbon uptake (Pei et al., 2022; Sun 
et al., 2023; Celis et al., 2024; Wang et al., 2024; Wei et al., 2025). Uncertainty is further compounded by seasonal variability in 
satellite-derived inputs, including NDVI, LAI, PAR, and LST. Persistent cloud cover during the monsoon season (July–September) 
degrades data quality, resulting in temporal gaps and potential underestimation of fluxes despite the application of compositing and 
gap-filling techniques. Model-related uncertainty associated with LUE assumptions also influences GPP estimates (Pei et al., 2022; 
Celis et al., 2024). Specifically, GPP increases rapidly under low PAR conditions but reaches saturation at approximately 10–11 g C 
m− 2 d− 1 when radiation exceeds ~350 W m− 2, reflecting physiological constraints and heightened sensitivity to water and nutrient 
limitations under high radiation regimes.

The coupled carbon–water relationship introduces additional variability. Although GPP and ET exhibit a statistically significant 
positive relationship (R2 = 0.42, P < 0.005), observations are concentrated within moderate ranges of GPP (6–8 g C m− 2 d− 1) and ET 
(1.5–2.0 mm d− 1), corresponding to an average water-use efficiency of approximately 3–4 g C kg− 1 H2O (Rotenberg et al., 2025; 
Hussain et al., 2026). Deviations from this relationship, particularly periods of elevated ET relative to GPP driven by high vapor 
pressure deficits or irrigation practices, remain difficult to resolve without more spatially extensive EC observations (Celis et al., 2021; 
Hussain et al., 2024b).

Despite these limitations, the remote sensing–based framework demonstrates strong agreement with independent products, 
showing significant correlations with FLUXCOM-GPP (R2 = 0.61, P < 0.005) and GOSIF-GPP (R2 = 0.58, P < 0.005), aligning with 
previous studies (Hussain et al., 2026). These results indicate that the methodology reliably captures broad-scale patterns of carbon 
uptake and ecosystem productivity. However, uncertainty increases at regional and ecosystem-specific scales, emphasizing the need 
for expanded EC networks, improved integration of ground observations with high-resolution satellite data, and explicit uncertainty 
analyses to enhance future assessments of water, energy, and carbon balances in Bangladesh's monsoon-dominated agricultural sys
tems. Future research integrating land-use dynamics with climate-driven models will support the development of adaptive agricultural 
strategies, sustainable water management, and improved carbon sequestration planning.

5. Conclusion

This study provides a comprehensive assessment of long-term carbon, water, and energy fluxes in Bangladesh, using multi-source 
remote sensing data and ground-based climate records from 2005 to 2022. The findings emphasize the significant influence of tem
perature, PAR, precipitation, and net radiation on carbon, water, and energy fluxes, with temperature and PAR emerging as the 
dominant drivers of carbon uptake. Temperature plays a crucial role in RE, while precipitation and Rn exerted secondary effects on 
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carbon uptake, reinforcing the importance of solar radiation and temperature in regulating carbon dynamics. The WUE analysis 
revealed strong seasonal and interannual variability, with higher values observed in the dry season and lower values during the 
monsoon. This variability underscores the sensitivity of agricultural productivity and carbon sequestration to climatic fluctuations. 
Additionally, the energy balance assessment indicated that a significant portion of radiative energy was transferred as LE, particularly 
during the monsoon and post-monsoon periods, emphasizing the critical role of evapotranspiration in regional climate regulation. 
Overall, the results emphasize the crucial role of climatic variables, particularly solar radiation, temperature, and precipitation, in 
driving the energy, water, and carbon fluxes in Bangladesh's agricultural ecosystems.

The study presents the necessity of adapting agricultural practices to enhance water use efficiency and carbon sequestration in 
response to climate variability. Although uncertainties remain due to seasonal variability in satellite data, persistent monsoon cloud 
cover and input parameter choices in the LUE model, the analysis of GPP, NPP, and ecosystem respiration reveals clear seasonal 
patterns in photosynthetic activity and carbon storage. The strong agreement between the estimated GPP and independent products 
such as FLUXCOM-GPP and GOSIF-GPP confirms the reliability of the modeling framework for national-scale assessments. Despite data 
and model uncertainties, the results provide reliable and valuable understanding into ecosystem functioning in monsoon-dominated 
environments.

This study represents a significant advancement in understanding the carbon, water, and energy balance in Bangladesh, marking 
one of the first comprehensive efforts to assess these crucial fluxes at a national scale. By combining long-term data from remote 
sensing and ground-based observations, it provides essential insights into the dynamics of agricultural ecosystems under the influence 
of climate variability. The findings not only inform sustainable land management, water use efficiency, and carbon sequestration 
strategies but also lay the groundwork for future national-level climate resilience and ecosystem management efforts. These methods 
and results are particularly valuable for regions with similar climatic conditions, offering a framework to address climate change 
challenges and enhance agricultural and ecological stability.
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Appendix A. Data Interpolation and Regional Climate Patterns

Monthly precipitation and temperature data from 25 meteorological stations (Bangladesh Meteorological Department) were 
spatially interpolated using Inverse Distance Weighting (IDW) in ArcGIS Pro 3.4 to match the 500 m satellite data resolution. Station 
spacing ranged from 27 to 145 km (average 55 km), with statistical consistency maintained before and after interpolation. IDW 
produced continuous climate surfaces by weighting values according to proximity. Resulting temperature and precipitation maps are 
shown in Figure A1.

Bangladesh exhibits distinct seasonal and spatial climate patterns. Winter (December–February) temperatures are lowest 
(22–26 ◦C), especially in the north. March–May sees sharp warming, exceeding 34 ◦C in central and northwestern areas. The monsoon 
season (June–September) features moderate temperatures (26–34 ◦C) and heavy rainfall, peaking around 800 mm in the northeast and 
southeast due to orographic effects. The northwest remains hotter and drier, while coastal southern regions experience milder con
ditions year-round from maritime influences. These climatic gradients strongly influence regional environmental and agricultural 
dynamics. 

Fig. A1. (Appendix) Long-term average climate map of Bangladesh by month (January to December), where the color gradient represents the 
average temperature (◦C) across the country from 2005 to 2022, and the lines indicate the monthly total precipitation (mm) during the same period.
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